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Abstract

Wc have developed a maximum likelihood method to estimate a set
of data uncertainty adjustment parameters, including scaling factors
and additive variances and covariances, for multivariatc Earth
rotation series. The necessary condition for maximizing tt-w likelihood
function results in a set of nonlinear equations in the unknowns.
Partial derivatives of the likelihood function with respect to the
unknown parameters arc derived to facilitate the LJSe of nonlinear
optimization algorithms in obtaining a numerical solution. ‘I h e
asymptotic covariancc matrix c)f the estimator is cierived to provide
uncertainty estimates for the parameters. Finally, an example using
the data from the Navy VL. HI Network (NAVNET) is presented,
showitlg  that both the correlations bctwccn components and the
variation of uncertainty from point to point arc essential elements of
the uncertainty structure of the NAVNH data.
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Introduction

Earth rotation is inherently multivariatc in nature; the components of
interest here are Polar Motion X, F’olar Motion Y, and lJT-I,
Measurements of earth rotation typically have errors that arc
correlated between components. The measurement uncertainty also
varies from point to point; measurement services typically provicic
along with a series of mcasurecj  values a corresponding series of
claimed uncertainties that attempts to describe the point to point
variation. When an earth rotation time series is smoothed, or when a
group of series arc combined, the best possible accuracy in the result
can only be obtairmcj if both the correlations between components
ancj the point to point variations in uncertainty are utilizecj in choosing
the weights assignecl  to the data.

In preparing a smoothing or combination an analyst typically performs
a number of intercomparisons to verify the quality of the data; these
intcrcomparisons commonly show that the claimed uncertainties
need to be adjusted. Simple commonly used methods of performing
this adjustment often result in acijusteci uncertainties that cjo not
exhibit correlations between components or point to point variations,
or do not adjust these two properties to correspond to the evicjence
exhibited by the intercomparisons.  A smoothing or combinatic)n using
such adjusted uncertainties thus cannot have the best possible
accuracy. Our primary objective in this paper is to present a method
of uncertainty adjustment that can adjust both the correlations
between components and the point to point variation to corresponcj  to
the empirical evidence.

If the actual measurement error contains a component that is
statistically independent of those considered in calculating the
claimed uncertainties, the addition of a term called the additive
variance to the claimed uncertainty will account for this component. If
the level of error in the raw data usc?d by the measurement service
has been under or over estimated in calculating the claimed
uncertainties, this can be corrected by scaling the claimed
uncertainties. These two types of adjustments can be useci in a
multivariate  setting if the additive variance is viewed as a covariance
matrix and the scaling is applied as a vector of scale factors for the
standard deviations as shown below. By using both of these types of
adjustment simultaneously we have a m’ethod that can adjust both the
correlations between components and the point to point variations in
uncertainty. Earth rotation measurement series commonly exhibit



systematic differences manifested in relative biases and rates; for
example, because of differences in the underlying reference frames.
In forming a combination series these biases and rates must be
estimated and removed. 1 herefore we have included estimation of
bias and rate parameters in our scheme for estimating uncertainty
adjustment parameters.

A Katman filter for earth rotation has been developed at the Jet
Propulsion Laboratory for combining and smoothing various series of
earth rotation measurements (Eubanks et al. 1985; Morabito et al.
1988). This filter uses a fully multivariate formulation that allows each
measured data point to have an associateci  full covariance matrix. To
take full advantage of the capabilities of this filter, we cicvclopcd the
multivariatc data uncertainty acijustment technique described in this
paper. The following sections present (1) the algorithm for estimating
the uncertainty adjustment parameters, (2) a method for calculating
the covariance  matrix describing the uncertainty in the estimatcc~
parameter vector, (3) a method for testing simple statistical
hypotheses concerning the uncertainty adjustment parameters, and
(4) an example applying these techniques to real data.

The estimation problem

1 he estimation problem can be stated as follows: given an Earth
rotation measurement series, simultaneously estimate the bias, rate,
and the uncertainty adjustment parameters (as expressed by the
scaling matrix S and the additive covariancc matrix A detailed below)
with respect to an independent reference series:

)/i: b-{ rAti-tei, i= 1,. ””, n [1]

where yi is a 3x1 column vector of the difference polar motion anti
UTI - TAI value at the i’th epoch, b is a 3x1 column vector of bias, r is
a 3x1 column vector of rate, Atj is the time deviation from a reference
time, and ei is a 3x1 column vector of random errors having zero
mean and a covariance  matrix Ci given by:

Ci = (SC~S’ -I A) -I C{ [2]

Ci is a sum of the adjusted data covariance matrix and the covariance
matrix of the reference series Cf. The problem of finding a suitable
reference series with errors known to be zero mean and covariance
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matrix C{ is an impc)rtant one, but is beyond the scope of this
paper.The observed data covariance  matrix C~ is adjusted using
matrices S and A with the following form:

=~{y:z] A[:,:$

The product SC~Sl scales the variances and

[3]

covariances of C~ by
the product of the corresponding components in S. Although different

ways of adjusting the formal error of the observed data are possible,
the model considered here is quite general in practice. Given ~, Ati, Q
and C[, the objective is to solve for b, r, and the uncertainty
adjustment parameter vector m defined as:

Maximum Likelihood Solution

1’ he estimation problem considered here has the unknown m
embedded in Ci and therefore the standard least squares method, in
which the covariance matrix Ci is assumed to be known (to within a
scaling factor), will not work, The maximum likelihood method is used
instead to find the solution. Assuming that the {ei} are mutually
independent with each following a multivariate normal distribution, the
likelihood function I, is given by:

.L(yl,  ““”, yn, b, r, m)= ]nl p(yi I b, r, ITI)
1:1

= ]n] P(ei I b, r, m)
1, 1

~ (2~)-3r1~(~J11cil-l~)exP{-;i~(e7~ilei)}

where P denotes the probability density function and I Ci I is the
determinant of Ci. Note that the unknowns b and r are embedded in ei

while m is embedded in Ci. Given a set of observations {yi}, the
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maximum likelihood estimate of b, r, and m is chosen as the one
which maximizes the likelihood function L. Since -L can also be written
as:

~~b, r, m): (2n)-3n’2 cxp(-F(b, r, m))

and
If-! Im

F-(b, r, m)= - > lnl Cil -I - >(e?Cilei)
2i, { 2i, l

[5]

the maximum likelihood estimate equivalently minimizes F. It follows
from equation [5] that the estimate minimizes a combination of the
weighted sum of residual squares together with the overall magnitude
(as represented by the determinant of Cj) of the covariance matrices.
To clearly see the nonlinear nature of the problem, consider the
necessary condition for minimizing [’:

- ~Cil(M-  b- rAti)
i:l

- ~AtiCi  l(yi - b - rAti)
i= I

[6]

The ~~ove set of ec~uations is clearly nonlinear in the unknown
parameters and the solution will require iteration.

For practical application of the covariance  adjustment parameters it is
important that the adjusted matrix SC%T -+ A be a legitimate
covariance matrix for new data with an arbitrary covariance matrix Co
as well as for the given matrices C? . I“hus SCOST -I A must be
non- negative definite for arbitrary Co and hcncc A must be
non- negative definite. Let A be expressed by the Cholcsky
decomposition A = LL’- where L is a lower triangular matrix:

111 0 0

Ipl 12Z o

1:+1 132 133 1



then A is non--negative definite for any L. For simplicity A is required
here to be strictly positive definite by requiring the diagonal elements
of L to be strictly positive; thus the L corresponding to a particular A is
unique. In this way, we are assured that & o;, and G? are positive,
but in general &XY, & , and C& could possibly be negative.

Since changing the sign of all three scaling factors mX, mY, mz does
not affect the adjustcci  covariance matrix, it can be assumed without
loss of generality that rnx >0.

Solution Algorithm

As the function F is a nonlinear function of the unknown parameters, a
numerical solution can best be obtained by using nonlirmar
optimization techniques (e.g. Gill et al., 1981). A package of Fortran
sllbrolltitl~s  called NPSC)L (Gill et al., 1986) is used here to minimize
F (given by equation [5]) subject to simple bounds: mX >0, 111>0, 122
>0, and 133>0.

Starting from an initial set of values for b, r, S, and L, NPSC)L uses a
sequential quadratic programming algorithm to find the solution (see
Gill et al., 1981, 1986 for details). Although NPSOL. can approximate
the partial derivatives of F with respect to the unknown parameters
by finite differences, it is more efficient and reliable if these partial
derivatives are given analytically.

Partial Derivatives

1 he partial derivatives ~~~~b and ~F/dr are given in [6]. The partial
derivative ~%t~l is shown in Appendix A to be equal to :

where

[7]

fi=-(clli C??i c33i Ci?i c13i c23i)1
-1

gi= (C~i (22~i e;i exieyi exiezi  eyiezi)

6



and the Ckji’s are the ekxnents of ci ,the eki’s arc the elements of ei
and the 1 ‘kji’s are the elements of ]Ti, which is the inverse matrix of Ci.
Differentiating C~lCi  : 1 with respect to the h’th element of m yields:

;)] ‘il

which can be used to compute the matrix --~lnl . Partial derivatives with

respect to the elements of L, which are needcci by NFJSOL,  can be
obtained from the partial derivatives with respect to the elements of A
by applying the chain rule, yielciing:

Uncertainty of the Parameter E-stimates

Let k be the maximum likelihood estimator of x, then it can be shown
(e.g. Kendall and Stuart, 1979) that, when the number of data
becomes large, X has a distribution which becomes normal, with
mean x and a covariance matrix V given by:

[8]

Substituting the partial derivatives into [8] and carrying out the
expectation:

v-l, [9]



where E i = ((gi - fi)(gi - fi)~”) is derived in Appendix B. The zero
elements result from the fact that the third moments of ei, as well as
the first, are zero since ei is assumed to be normally distributed. [t
follows that b and i are, asymptotically, statistically independent of m.
Note that V is a function of the unknown parameter m. To obtain an
estimate of V, one simply substitutes m for m in [9].

Example

As an example of the estimation problem discussed above, we have
estimated the biases, rates, ancj data uncer~ainty adjustment
parameters for a set of NAVNE-T  VLBI data (Eubanks et al., 1993)
from 1989/9/1 1 to 1992/12/31 with respect to a smoothed reference
series SPACE92  (Gross 1993). A total of 220 measurement epochs
are used. The primary reason to usc NAVNET data is that the full data
covariance  matrix is available.

l-he results obtained using NPSO1.  are shown in Table 1 in the
column entitled ‘Full solution’. The corresponding value of F is
628.451. We then tested several hypotheses about the error structure
of the NAVNET data using the likelihood ratio test described below
and the results arc shown in l-able 2, where I and O are the identity
and zero matrices respectively.

For example, the null hypothesis HCI : S I 1, A = O can be tested
against the alternative hypothesis H a : S # 1, A # O using the
asymptotic distribution of the likelihood ratio ?L: bftt , where Po is the
likelihood of the null model and Pf is the likelihood of the full model in
which S and A are unrestricted. For large n, it can be shown that
-21n)~ has asymptotically a X2 distribution with degrees of freedom (p)
equal to the number of parameters tested in the hypothesis (e.g.
Mendenhall  et al., 1990). 1 herefore, the rejection region is given by
- 21n}L > ~~(p, a) where u is the probability that such a X2 value will be
exceeded if the null hypothesis is correct.

Case 1 tested the hypothesis that no uncertainty adjustments are
needed, case 2 tested the hypothesis that all scaling factors are equal
to zero (i.e. one can completely ignore the provided data covariancc
matrices), case 3 tested the hypothesis that no additive variances and
covariances are needed, case 4 tested the hypothesis that no
additive off--diagonal covariances are needed, case 5 tested the
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hypothesis that no scalings are needed, case 6 tested the hypothesis
that all three scaling factors arc equal. All hypotheses are rejected at
99°/0 confidence level except case 6, which suggests that a single
scaling factor can be used to scale the uncertainty in addition to A.

Discussion

For comparison, we have determined another solution in which the
uncertainty adjustment paratncters were estimated one component
at a time. In this case the claimed correlations between components
are necessarily neglected and the off- diagonal elements of A cannot
be estimated. The result is shown in Table 1. When the resulting
parameter values are used in equation [5] to make a (multivariate)
evaluation of F, the value obtained is 649.333, corresponding to a
likelihood that is 9X10- 10 tirncs that of the full model. l-he small
likelihood is due in part to the neglect of the off- diagonal terms of A,
and in part to the neglect of the off- diagonal elements of C~) anc~ C[
when estimating the parameters. Even though the individual
parameter values are not significantly different from the full solution
except a~z , the solution when viewed as a vector of dimension 15 lies
outside the 99% confidence region given by the full solution.

l-he maximum likelihood method thus provides a means for
objectively deciding such questions as (1 ) whether correlations
between components must be accounted for, (2) whether variations
of uncertainty between data points must be accounted for, (3)
whether uncertainty adjustment by scaling or by use of additive
variance is more effective, and (4) whether both S and A are needed.

l-he likelihood function L can have more than one local maximum
and which one is found by NF)SOL can depend upon the starting value
of S and L. However, we found that, for the NAVNET example, as
long as the starting values of III, IXI, anti ISS are not too close to zero
(i.e. too near to the lower bounds) and all scaling factors are
constrained to be positive (i.e. SC~S1 should preserve the sign as well
as the magnitude of the original correlations) , a variety of starting
points all yielded a single solution, which had a larger likelihood than
was sometimes obtained if the above conditions were not met. Note
that allowing mY and m~ to be negative (and starting at say, my Z- ~ 1
mZ = 11 ) can be used to test for sign errors in the claimed correlations
(we did not find any in the NAVNET example). A good starting point is
provided by b = O, r = O, S = 1, and L = I (in data units).



The maximum likelihood solution does not require that the reduced
chisquare  of the residuals be one. However, in all the examples we
have tried, the optimal solution has had a reduced chisquare  that is
not statistically significantly different from one. In the NAVNET
example, the reduced chisquare of the full solution is 1.04.

The maximum likelihood approach presented here can be readily
extended to a higher dimension than three, for example, by including
the nutation angles in the adjustment.
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From equation [5], the partial derivative can be written as:

Let

ei z

exi 1eyi , Cj =

We Zi

C l l i  c12i c13i )
Clsi C?si c33i

J

fi=(clli C22, cssi Cl?i Clsi Cpsi)’

[10]

“1’ l’12i l’13iIli

1’ l’22i l’23i12i

1’13i I ’23 i 1’33 i

gi = (efi e~i e~i exieyi  exiezi eyiezi )’
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the second term of [1 O] can be written as:

and the first term of [1 O]can be written as:

[11]

[12]

The last equality of [12] follows from the fact that f)’I-i = 3. Equation [7]
is obtained by combining equations [11] and [12] with [10].

Appendix B: Calculation of Ej

For simplicity, the subscript i is dropped in the following derivation.
Recall the definition of E:

E:=((g--f)(g - f)7)= (ggl)- ffl

where the expectation typically involves (ek el en) en), which can be
evaluated using the characteristic function of a zero mean
multivariate  normal distribution (e.g. Chatfield  and Collins, 1980)

{
j~cttj@e (t) : exp -- ‘ ij i

j)j }

with q being the number of components in each measurement vector
(3 here). The result is:
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Now, the elements of E, can “be written as:

where the indices (k,l) and (m )n) correspond respectively to the i’th
and j’th components of both g and f . Note that the above derivation is
valid for an arbitrary dimension q.
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Table 1: Parameter Estimates

Quanti

..—
bX-

bY

Y

bz
..—. ..——

rx

ry

rz

mx
——-.

my
—..

mz

—.———-

C&
F

——. . .——-.  ——

Full solution

-0.403.0.0 5

o.~zl 0.05-””

1 .38; 0.05

o.24:~ 0.04
—.—_——

-0.06:10.04
.

0.03:10.03

1.5?:10.16

1.24=1.0.15

1. W?O.15
——- —-—— — . .

0.09:10.03

0.12:~ 0.03

0,08L!.O.03

0.00:10.02

- o.07~.o.ol

- 0.03i0.02

628.451

—

Component
by component

solution

-0.39:1.0.06

0.98fl.O.05

1.42:0.05
. .——

0.23~1 0.04

-0.06:10.04

0.00:10.03
.

1.49{0,20

1.33:10.18
— . .

1.23:10.19

0. IOJO.04
—. .

0. IOJO.03

0.08i0.03

- - - - - - - -

649.333

Unit

mas

mas

mas
.——. .—
m as/yr

—- ..—— .—
mas/yr

mas/yr

-——

mas2
.—

mas2

masp
—. —.-

mas2

mas2

mas2
— -—

-.
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T’able 2: Case studies

Case Ho

1 A= O,S=-I

2 S=-”o “

3 A: O “’

4 A diagonal
.. —.—.

5 S=l
——

6 S E-- ml ‘-
. .—

P

9

3

6

3

3

2

- 21nk

271.2
..—

178.6

42.5

26.2

12.8

2,9

Z2(P)0.0V

21.7
—. .—— —

11,3

16.8

11.3 -

——
11.3 -

9.21

p = number of parameters tested
likelihood of the null model

Z = Iikelihooci r a t i o :
Iikclihooci of the full model

X2@,0.01) = right- tail critical number for p degrees of
freedom and [X= 0.01
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